If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x^2+9x+4.5=0
a = 1; b = 9; c = +4.5;
Δ = b2-4ac
Δ = 92-4·1·4.5
Δ = 63
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{63}=\sqrt{9*7}=\sqrt{9}*\sqrt{7}=3\sqrt{7}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(9)-3\sqrt{7}}{2*1}=\frac{-9-3\sqrt{7}}{2} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(9)+3\sqrt{7}}{2*1}=\frac{-9+3\sqrt{7}}{2} $
| 16=5u-4 | | 3(x+1)=2⋅(x+6) | | x^2+9x+4.5=2.5 | | 4x/7=35 | | -5=7+u/4 | | 10+4x-8=6x+4-2 | | F(n)=-2n+2 | | 8x3-(6x)=0 | | 251-x=150 | | 124-10v=4 | | 20=v/4+16 | | 15=6+3y | | 84=-w+162 | | 188=-y+49 | | 2x+4=–(–7x+6) | | 59=3x+17 | | y+3=8*8 | | 3(2x−1)=2x+13 | | 30=v/3+12 | | 14n-3(4n+5)=-9+2(n-8) | | 8w=528-8 | | 14x-2+3x+1=180 | | 10(8+3h)=+h | | 3x(x-2)-5x+10=0 | | 6(2×-5)=-(x+4) | | 4x5=-11 | | 19g=551 | | 9=2y-17 | | 6+x=3(2x–7) | | 45+x=2x-10 | | 2/0=25n5 | | x/5+17=25 |